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In most classical fluids, shock waves are strongly dissipative, their energy being quickly lost through viscous damping. But in systems
such as cold plasmas, superfluids and Bose–Einstein condensates, where viscosity is negligible or non-existent, a fundamentally
different type of shock wave can emerge whose behaviour is dominated by dispersion rather than dissipation. Dispersive shock waves
are difficult to study experimentally, and analytical solutions to the equations that govern them have only been found in one dimension
(1D). By exploiting a well-known, but little appreciated, correspondence between the behaviour of superfluids and nonlinear optical
materials, we demonstrate an all-optical experimental platform for studying the dynamics of dispersive shock waves. This enables us
to observe the propagation and nonlinear response of dispersive shock waves, including the interaction of colliding shock waves, in
1D and 2D. Our system offers a versatile and more accessible means for exploring superfluid-like and related dispersive phenomena.

Unlike dissipative shock waves in ordinary gases/fluids, which have
a well-defined shock front due to viscosity, dispersive superfluid-
like shock waves have an oscillatory front. These oscillations
result from two basic, and related, properties of the superfluid
state: nonlinearity and coherence. Coherence results from cooling
the fluid, so that the constituent particles of the condensate are
perfectly correlated, whereas nonlinearity refers to the interparticle
interactions that make this correlation possible. For different
reasons, these two properties also occur in nonlinear optics.
Although the relationship is well known in the condensate
community (for example, nonlinear ‘atom optics’ studies in
Bose–Einstein condensates (BEC)1–3), the relationship has been
underappreciated from the opposite perspective. Here, we build
on previous theoretical4,5 and experimental6,7 work on superfluid
behaviour in BEC to examine the optical equivalent of condensate
shock waves. We demonstrate basic dispersive, dissipationless shock
waves in one and two transverse dimensions, characterize their
nonlinear properties and reveal the non-trivial interactions when
two such shocks collide.

Although dispersive shock waves in optics have been studied
previously for temporal pulses in fibres8–16, they have not yet been
considered in the spatial domain. In this case, the extra dimensional
freedom allows consideration of wavefront geometry, which is
shown to significantly affect shock propagation and interaction.
The particular system considered here is a spatial one in which
a continuous optical wave propagates in a nonlinear Kerr-like
medium, mainly along the z axis. To an excellent approximation,
the slowly varying amplitude ψ of such a field can be described by
the nonlinear Schrödinger equation:
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where k0 = 2πn0/l is the wavenumber, l/n0 is the wavelength
in a homogeneous medium of refractive index n0 and
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Figure 1 Experimental set-up. Light from a laser is split using a Mach–Zehnder
interferometer. A cylindrical/circular lens placed in one of the arms focuses a beam
onto the input face of an SBN:75 photorefractive crystal. For the nonlinear
experiments, a constant voltage of −500 V is applied across the crystalline c axis to
set the photorefractive screening effect, whereas the shock strength is controlled by
varying the hump:background intensity ratio with an attenuator. Light exiting the
crystal is then imaged into a charge-coupled-device camera. Both position (x) space
and momentum (k) space are imaged. For the collision experiments, a second
lensing arm in the interferometer is added.

�n = n2k0|ψ|2/n0 is the nonlinear index change for a Kerr
medium with coefficient n2 (n2 < 0 for defocusing). For the
spatial case, the transverse laplacian describes beam diffraction,
whereas in the temporal case it describes pulse spreading due to
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Figure 2 Experimental pictures of superfluid-like optical spatial shock waves. a–c, Input face. d–f, Linear diffraction at output face. g–i, Nonlinear shock waves at
output face. Left column: 1D stripe. Middle column: 2D ellipse. Right column: 2D circle.

dispersion. As is well known17–20, equation (1) also describes the
(macroscopic) ground-state wavefunction for a fully condensed
quantum state: ih̄∂tψ + (h̄2

/2m)∇2
⊥ψ + g|ψ|2ψ = 0, where m is

the mass of the underlying particle and the nonlinear coefficient
g represents the mean-field contribution of (s-wave) interactions.
In this approximation, the dynamics are more properly described
as wave mechanical rather than quantum, with h̄ simply serving
as a parameter that normalizes the wavefunction. Note, in
particular, that wave-packet evolution in time corresponds to beam
propagation in space.

It is instructive to give the fluid context for the dynamics of
equation (1). Applying the Madelung transformation21 ψ(x, z) =√

ρ(x,z)exp[iS(x,z)], where ρ is the intensity of the beam and S
is its coherent phase, and scaling (x,z) → k0(x,z) gives the Euler-
like fluid equations22,23:
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Here, v = ∇⊥S is the ‘fluid’ velocity and c = √
n2ρ∞/n0 is an

effective ‘sound’ speed due to the background intensity ρ∞ =
ρ(|z| → ∞). The last term in equation (3), often called the
‘quantum pressure’ in condensed matter, is significant only for
steep gradients and in regions where the fluid density/optical
intensity goes to zero, for example, wave-breaking, dark-soliton
formation and the ‘healing’ of a condensate near a boundary23.

The experiments below consider a bright hump superimposed
on a uniform, low-intensity background (Figs 1 and 2). In the

initial stages of evolution, the last term in equation (3) can be
neglected, giving the standard momentum equation

ρ

(
∂v

∂z
+ v∇⊥v

)
= −∇⊥

(
n2ρ

2

2n0

)
. (4)

In this form, it is clear that the nonlinearity gives rise to an effective
pressure, whose gradient drives the acceleration of the optical fluid.
Note from equation (1) that the nonlinear contribution to the
phase S ∼ n2k0|ψ|2(�z)/n0 = n2k0ρ(�z)/n0, so that equation (4)
is self-consistent with the definition of velocity.

The dynamics of an initial profile depend on the strength
of the nonlinearity. For concreteness, consider a 1D gaussian
intensity profile superimposed on a homogeneous background:
ρ(x, 0) = ρ∞ + 2ηρ∞ exp(−x2/σ2), where σ is the width of
the gaussian and η is its relative amplitude. In the linear case,
equivalent to a non-interacting gas, the hump will simply diffract
(disperse) against the background. In the nonlinear case, the hump
will split into two equal pieces that repel each other. For weak
nonlinearity, the basic physics can be seen by considering small
perturbations around the background intensity, that is, η � 1. In
this case4, equations (2) and (4) give a sound-like propagation
equation, (∂2

z − c2∂2
x)S = 0, resulting in two travelling waves:

ρ(x,z) = ρ∞ +ηρ∞[exp(−(x − cz)2/σ2)+exp(−(x + cz)2/σ2)].
For stronger nonlinearity, the two pieces will propagate with a
velocity v = v(ρ) that depends on the local intensity, rather than
at the constant sound speed c. Higher-intensity parts of the profile
will travel at faster speeds, leading to wave steepening and eventual
shock formation24. Note that both the initial hump splitting
and shock formation require a background intensity; without a
reference (even in the nonlinear case), there is only a single hump
which weakens as an expanding rarefaction wave.
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Figure 3 Shock length, measured from the centreline to the end of oscillations,
with respect to peak-to-background intensity ratio. Plots of the functions
Ds = as (1+ bs

√
ρ/ρ∞ ) to fit the 1D stripe, 2D ellipse and 2D circle cases,

respectively. The error bars signify maximum measured deviations due to poor
visibility of the leading-edge endpoint.

Unlike shock models with viscosity (for example, Burgers-
type descriptions25,26), there is no dissipation mechanism to
counteract nonlinear wave steepening. Instead, the increasing
gradient triggers an increase in dispersion. More accurately, self-
phase modulation within the high-intensity region generates new
(spatial) frequencies, which then disperse into the surrounding
medium. Rather than a well-defined front in which the high
pressure/intensity monotonically decreases to match the low-
pressure background, the travelling wave develops on oscillating
front (Fig. 2g). Here, the presence of a background provides
a reference intensity/phase for visualizing the different wave
components. In condensate terms, the background density sets the
reference sound speed, meaning that higher perturbation densities
naturally correspond to supersonic sources. As shown by several
authors5,27–29, the 1D shock profile is a Jacobi elliptic function,
found by matching the high- and low-intensity boundaries. The
inner, nonlinear part of the front resembles a train of dark (or
grey) solitons, whereas the outer part is a low-intensity region with
oscillations that are effectively sound-like5,27–30.

In most systems in which shock waves are possible, there is
usually a thermal component responsible for energy dissipation.
Moreover, viscosity usually dominates dispersion in cases where
both elements are present, damping oscillations before they
can form. Here, the focus is on the basic nonlinear dynamics
of dispersive waves, without the complications of a viscous
term. In the ideal case, the model system is a fully condensed
superfluid, in which excitations are ignored (so that the mean-
field approximation of equation (1) is valid23). Similarly, cold
plasmas can support such dispersive waves when damping effects
can be neglected31–34. In hydraulics, neglecting viscosity gives an
‘inertia’-dominated regime, suitable for coherent descriptions of
dam breaking, surface waves and undular bore propagation24. (An
alternative view of this can be obtained by considering equation (1)
as the long-wavelength limit of other dispersive wave models, for
example, the Korteweg–de Vries equation35.) From an experimental
viewpoint, the mapping to nonlinear optics allows the isolation of
a totally coherent wave, so that the basic properties of shocks in
a purely dispersive fluid can be studied in detail. It also greatly
simplifies the set-up (shown in Fig. 1), and provides easy control
of the input conditions and direct imaging of the output.
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Figure 4 Experimental output pictures versus initial separation distance
between two adjacent shocks. a–c, Experimental output pictures and
cross-sections when the initial separation distance is 500μm (a), 200μm (b) and
50μm (c). Note that there is no collision in a within the propagation distance,
b shows a typical collision process, and c shows a single, double-front shock output
due to very close interactions.

Experiments were carried out using 532 nm laser light projected
into an 8 mm×8 mm×8 mm strontium barium niobate (SBN):75
photorefractive crystal. For this crystal, the nonlinear index change
in equation (1) is �n =−(1/2)n3

0r33Eappρ̄/(1+ ρ̄), where n0 =2.3
is the base index of refraction, r33 =1,340 pm V−1 is the appropriate
electro-optic coefficient with respect to the applied field, Eapp,
and the crystalline axes, and the relative intensity ρ̄ is the input
intensity |ψ|2 measured relative to a background (dark current)
intensity36–38. A self-defocusing nonlinearity is created by applying
a voltage bias of −500 V across the crystal and taking advantage of
the photorefractive screening effect. This voltage is held constant
throughout the nonlinear experiments, and only the intensity of
the central hump is changed to probe nonlinearity. This restriction
isolates the dynamics to only intensity-dependent effects, ensuring
the generality of the results. Note further that the use of defocusing
nonlinearity minimizes the difference between the saturable and
Kerr cases39,40. For the shock waves considered here, there is less
evolution (higher central intensity and fewer front oscillations) in
a given length for saturable nonlinearities than for the Kerr case;
otherwise, the two behaviours are identical.

The experimental set-up is shown in Fig. 1. Extraordinarily
polarized laser light is split using a Mach–Zehnder interferometer:
a weak plane wave in one of the arms serves as the low-intensity
background, whereas the central intensity hump is formed by using
a lens (cylindrical or spherical) in the other arms. The beams are
then recombined on the input face of the crystal. The language used
here is ‘hump-on-background’, but it is important to emphasize
that, as far as the crystal is concerned, the input wavefunction is
a single coherent wave. At the exit face of the crystal, the output
beam profile is imaged onto a charge-coupled-device camera. Real-
space imaging allows photographs of position (x) space, whereas
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Figure 5 Fourier power spectra of shock collisions versus initial separation distance. a, Experimental output measurement of linear diffraction from an initial hump
separation of 500μm. b–d, Nonlinear spectra corresponding to Fig. 4a–c: initial 500μm separation (b), initial 200μm separation (c) and initial 50μm separation (d). The
insets show simulation results from beam propagation code. e, Average value of spectral windows A, B and C (in b) versus initial separation distance. The solid lines in e are
guides for the eyes, whereas the error bars indicate standard deviation of measurements.

carrying out an optical Fourier transform allows photographs of
momentum (k) space.

Typical shock waves are shown in Fig. 2. Initial stripe, elliptical
and circular profiles (Fig. 2a–c) were formed by using cylindrical
lenses (one for the stripe, two orthogonal ones for the ellipse)
and one circular lens, respectively. The intensity ratio between
peak and background was adjusted by a variable attenuator placed
before the lenses. For the inputs here, the background beam has
10 mW of power and the peak-to-background ratio is 20:1. In the
linear case (Fig. 2d–f), the high-intensity humps simply diffract
against the low-intensity background, keeping their gaussian-like
structure and creating small ripples in the tails as the phase
front curves. In contrast, turning on the defocusing nonlinearity
(Fig. 2g–i) forces the hump apart, depleting the central region and
creating two repulsive shock waves with oscillating fronts. Note
that the stripe and circle profiles are symmetrical, whereas the 3:1
ellipse has an asymmetric profile, as expected from the anisotropic
intensity gradient.

As the intensity ratio of the initial profile increases, the
shocks become more violent, with faster wave propagation and
more oscillations within the front (stronger effective repulsion
and higher nonlinear phase). Indeed, dimensional analysis from
equation (3) suggests that v ∼ √

ρ/ρ∞. However, simple scaling
arguments cannot determine the coefficient. In Fig. 3, we plot the

measured front length (measured from the centreline to the end
of oscillations) as a function of ρ/ρ∞. The solid curves are best
fits of the functions Ds = as(1 + bs

√
ρ/ρ∞), done independently

for each shape s. Here, as = L
√

n3
0r33Eappρ∞/2 = 54 μm

is a dimensional scaling constant, dependent only on the
background intensity and fixed crystal properties (length L, base
index n0, electro-optic coefficient r33, and applied voltage Eapp),
and the b-coefficients are 1.2, 1.0, 0.92 ± 0.04 for the stripe,
ellipse and circle, respectively. The power scaling matches the
predicted relation, but the stripe coefficient is higher than recent
1D theory4,5,29,30 suggesting b = 1.0 (probably owing to our use
of very high intensity ratios). Note, however, that there has
been no analytic treatment of dispersive, dissipationless shock
waves in higher dimensions. The experimental results here show
that geometry and the available expansion directions play a
significant role.

Further insight into the behaviour of dispersive shock waves
can be gained by considering their basic interactions. In Figs 4–6,
several types of shock collision are shown. For these experiments, a
second lens arm is added to the Mach–Zehnder scheme, as shown
by the dashed line in Fig. 1. Figure 4 shows typical results from 1D
shock interactions. Figure 4a–c shows, respectively, output profiles
when the initial humps are separated by 500, 200 and 50 μm. In
Fig. 4a, the shocks do not intersect over the crystal length (and
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Figure 6 Shock wave collisions. Left column: Beam-propagation simulations. Right column: Experimental output pictures. a,b, 1D collision. c,d, 2D collision. e,f, 1D-on-2D
shock collision. The outer regions show undisturbed shock behaviour, whereas the inner regions reveal the non-trivial interaction of nonlinear, dispersive waves. In particular,
the wavefronts penetrating each circle in c and d are straight, the right-going wavefronts in e and f are flattened and the left-going wavefronts in e and f become concave.

therefore show individual profiles), whereas in Fig. 4b the initial
condition is chosen so that the waves do not intersect in the linear
case but do overlap in the nonlinear case. Despite the low intensity
in the leading edges, the profile shows that shock collision is an
inherently nonlinear process. As shown in Fig. 4b, the collision
region has (1) a lower maximum intensity than the expected
4× gain of linear superposition, (2) an internal period of 7 μm,
significantly more than the 5 μm expected from a linear sum of
10 μm tails, (3) a narrower width than that of the individual fronts
and (4) a more regular period than the individual tails. The first
two characteristics are a direct result of the defocusing (repulsive)
nonlinearity, whereas the last two involve details of nonlinearly
interacting waves that are still being explored. Four-wave mixing
effects are particularly relevant here41–43, but the dynamics are
complicated by the broad spectrum of spatial scales within the
shock fronts. We note that within the collision region, there is a
modulation of the envelope, that is, a second phase, as predicted
in ref. 29.

For closer initial separations, the individual shock profiles
cannot form, and a different aspect of the dynamics becomes
dominant. As shown in Fig. 4c, the output consists of a single
shock with a double front, rather than two individual shocks with
a common collision region. Essentially, the initial overlap creates
a high-intensity region, which itself acts as a source for a new
shock wave. This nonlinear Huygens’ (or Hadamard) principle44,45

is common to all shock-wave interactions. Indeed, we note that
similar results were observed in the BEC experiments of ref. 7.
In that case, however, the presence of a trap potential created
transverse variations in the density. The resulting variations in
shock speed across the front led to hybrid shock–vortex structures7;
in interactions, the vortices can split and merge, giving rise to
rich and complex dynamics that are coupled with the shock–shock
interactions. In contrast, the photonics experiments here focus on
the homogeneous case. Remarkably, it is found that the shock

fronts are stable during propagation and do not generate vortices
even after (head-on) collision. We conjecture that the array-like
structure of the front is responsible for this, as individual 1D
dark solitons suffer a snake instability (leading to vortices) in two
transverse dimensions46,47 but 1D arrays are stable48,49.

Power spectra of 1D shock interactions, obtained by carrying
out on optical Fourier transform on the output profiles in
Fig. 4, are shown in Fig. 5. The linear reference case, that of two
widely separated gaussian beams on a background, is shown in
Fig. 5a. There are three main features of this spectrum: (1) there
is a dominant central peak at kx = 0 due to the uniform
background, (2) there is a fast oscillation resulting from the spectral
beating exp[−(x −Δ)2]+ exp[−(x +Δ)2] → cos(kΔ)exp[−k2]
and (3) there is a slow envelope modulation from wave mixing
with the central background peak. The equivalent nonlinear case
of two widely separated shock waves (Fig. 4a) is shown in Fig. 5b;
as in Fig. 5a, it is a modulated form of the individual power
spectrum. By comparison, the shock spectrum consists of a much
broader range of spatial frequencies (implying more efficient energy
dispersion), with two spectral holes appearing within the linear
range. These holes create two distinct spectral regions, or humps,
on either side of the central peak. The inner regions are large-
scale modulations resulting from the initial splitting of the hump,
whereas the outer tail regions result from wave steepening and
the nonlinear generation of dispersive waves (much like the broad
spectrum in supercontinuum generation50). As the initial beams
are brought closer together, the fronts will overlap and interact
with each other during propagation. In terms of the spectral
energy density, there will be a power transfer between the two
regions highlighted in Fig. 5b. Difference frequencies in the (small-
scale) tails will transfer energy back to the large-scale humps.
(Owing to the broad background, the power within the central
peak stays relatively constant.) As shown in Fig. 5e, there is a
maximal amount of (integrated) energy transfer as a function of
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initial shock separation, occurring at a distance that corresponds
with the front width. For closer initial separations, the double-
front shock of Fig. 4c is formed; in this case, the tails do not have
time to form initially, so the interaction results in energy transfer
from the large-scale humps to smaller-scale waves. Finally, we note
that the collision dynamics, and the corresponding spectral energy
distributions, are very sensitive to the relative phase of the shocks.

In higher-dimensional collisions, wavefront geometry becomes
a significant factor. Figure 6 shows experimental results of 2D shock
interactions along with simulation results from a split-step Fourier
beam propagation code. In the collision of two equal circular shocks
(Fig. 6c,d), the ripples penetrating each ring are straight, rather
than the circles expected from a linear superposition (for example,
drops in a pond). Again, this is due to the nonlinear Huygens’
principle: the two intersecting arcs originally superimpose to form
a straight front, which then acts as a source for quasi-1D shock
waves. Note also that the central ‘peak’ has split into two owing
to the self-defocusing nonlinearity. Similar wavefront distortions
occur in the 1D-on-2D collision (Fig. 6e,f). The right-moving
shocks have a weaker curvature than they started with (compare
with the undisturbed rings on the left), whereas the left-moving
shocks have a concave front. This type of curvature would normally
create a lensing effect, but the defocusing nonlinearity provides a
competing force.

As with the 1D collisions, the internal dynamics are complex
and have not yet been examined in any rigorous detail. Whereas
such behaviour occurs in any dissipationless, coherent wave system,
such as idealized, non-viscous hydrodynamics and fully condensed
systems, observations are significantly easier in the optical case.
Hence, in addition to providing a versatile platform for new
photonic physics, it is anticipated that the results reported here
will lead to all-optical modelling of even richer superfluid-like and
related dispersive phenomena.

Received 25 May 2006; accepted 30 October 2006; published 17 December 2006.
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